一是复习要先从大处着手。考研数学中的高等数学(微积分)、线性代数、概率论与数理统计各有自己的体系,从其体系结构入手复习所得知识是完整的,易理解的。高等数学围绕微分与积分展开:函数是研究微积分的对象,因为微分与积分都是对函数所做的运算;极限是研究微分与积分的工具,因为微分与积分都是由极限定义的;连续是通过极限研究函数所得的性质;微分中值定理是微分即导数的应用等等。这样就能把每个科目的知识点织成一张网,各个点之间相互联系,相互作用,从一个点也能到达其他的点。从大处着手也就是先看森林而不看树木。
二是从基础出发,各个击破。把握整体知识网络后,就要从大纲范围内的各个知识考点出发,各个击破。大纲范围内的考点很多,每个知识点投入的精力不可平均分配。根据《数学考试大纲导读》可知:大纲中考点的要求与这点处出题的概率有一定的关系。所以对需要“掌握”的内容投入多一点精力,一定要达到“掌握”的程度;而对“了解”的内容就不需要太过深入,“了解”了就可以了。而对于应该“掌握”“理解”的基本概念、基本定理、基本方法,一定要融会贯通。
三是提高做题能力。考研初试。这时是以试卷题目的完成数量及质量来评价考生的水平的,所以复习时就只能把最后的着眼点放在做题上能力上。题海战术当然不可取,但适量的做题感觉必须培养出来。比如对选择或填空题,需要提高快速做题以得到正确答案的能力,对解答题来说,考查的内容一般都是综合性较强,方法也不止一种,那就需要在平时积累一些解题技巧,以便节省时间并提高正确率。
五一要到了,过一阵子,往往好多学生都会把一半的精力投入到专业课的复习当中,这样无形中就会占用了公共课的备考复习时间。公共课复习中考研数学让很多考生感到头疼,那么考生怎样才能高效复习呢?线性代数又该如何提高呢?
高数各部分常见题型
五一已过,过一阵子,往往好多学生都会把一半的精力投入到专业课的复习当中,这样无形中就会占用了公共课的备考复习时间。公共课复习中考研数学让很多考生感到头疼,那么考生怎样才能高效复习呢?线性代数又该如何提高呢?
一、重视基本概念、基本性质、基本方法的理解和掌握
基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够透彻,在答题中对基本性质的应用不知如何下手,造成许多本可以避免的失分现象,甚为可惜。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,同时配合基本题的练习巩固基本知识。
二、加强综合能力的训练,培养分析问题和解决问题的能力
从近十年特别是近两年的研究生入学考试试题看,对考生分析和解决问题能力的考核有所增强。线性代数部分的两个大题中基本上都是多个知识点的综合考查,从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的全面考查。因此,在打好基础的同时,通过做一些综合性较强的习题,如《考研数学全真模拟试卷及精析》(或做近年的考试真题),边做边总结,加深对概念、性质内涵的理解和应用方法的掌握。
三、注重分析一些重要概念和方法之间的联系和区别
线性代数部分的基本概念和性质较多,并且它们之间存在着千丝万缕的联系,同学们要特别注意根据每年线性代数考试的两个大题内容找出所涉及到的概念与方法之间的联系与区别。例如:向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握它们之间的联系与区别,对大家做线性代数部分的大题在解题思路、方法、技巧方面会有很大的帮助。
线性代数要点
一、重视基本概念、基本性质、基本方法的理解和掌握
基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够透彻,在答题中对基本性质的应用不知如何下手,造成许多本可以避免的失分现象,甚为可惜。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,同时配合基本题的练习巩固基本知识。
二、加强综合能力的训练,培养分析问题和解决问题的能力
从近十年特别是近两年的研究生入学考试试题看,对考生分析和解决问题能力的考核有所增强。线性代数部分的两个大题中基本上都是多个知识点的综合考查,从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的全面考查。因此,在打好基础的同时,通过做一些综合性较强的习题,如《考研数学全真模拟试卷及精析》(或做近年的考试真题),边做边总结,加深对概念、性质内涵的理解和应用方法的掌握。
三、注重分析一些重要概念和方法之间的联系和区别
线性代数部分的基本概念和性质较多,并且它们之间存在着千丝万缕的联系,同学们要特别注意根据每年线性代数考试的两个大题内容找出所涉及到的概念与方法之间的联系与区别。例如:向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握它们之间的联系与区别,对大家做线性代数部分的大题在解题思路、方法、技巧方面会有很大的帮助。
概率论要点
一、随机事件与概率
重点难点:
重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式
难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算
常考题型:
(1)事件关系与概率的性质
(2)古典概型与几何概型
(3)乘法公式和条件概率公式
(4)全概率公式和Bayes公式
(5)事件的独立性
(6)贝努利概型
二、随机变量及其分布
重点难点
重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布
难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布
常考题型
(1)分布函数的概念及其性质
(2)求随机变量的分布律、分布函数
(3)利用常见分布计算概率
(4)常见分布的逆问题
(5)随机变量函数的分布
三、多维随机变量及其分布
重点难点
重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布
难点:多维随机变量的描述方法、两个随机变量函数的分布的求解
常考题型
(1)二维离散型随机变量的联合分布、边缘分布和条件分布
(2)二维离散型随机变量的联合分布、边缘分布和条件分布
(3)二维随机变量函数的分布
(4)二维随机变量取值的概率计算
(5)随机变量的独立性
四、随机变量的数字特征
重点难点
重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数
难点:各种数字特征的概念及算法
常考题型
(1)数学期望与方差的计算
(2)一维随机变量函数的期望与方差
(3)二维随机变量函数的期望与方差
(4)协方差与相关系数的计算
(5)随机变量的独立性与不相关性
来源:网络